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Prehistory < 1900

Abacus (∼ 3000 B.C.): Probably existed in
Babylonia (present-day Iraq).
Antikythera mechanism (∼ 80 B.C.): Discovered
in 1901, within an ancient Greek shipwreck off
the island of Antikythera.
Mechanical adding machine (∼ 1620− 1640):
Wilhelm Schickard, Blaise Pascal, Gottfried
Wilhelm Leibniz.
Difference Engine: Charles Babbage
(1791− 1871).
First program: Ada Augusta Byron, Countess of
Lovelace (1815− 1852).
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A mathematical boost 1900− 1940

David Hilbert (1900): addressed the International
Congress of Mathematicians with three main
questions on computability.
Kurt Gödel (1931): Answered two important
questions on consistency and completeness.
Alan Turing (1936): constructing a formal model
of a computer, the Turing machine and answered
Hilbert’s Entscheidungsproblem by introducing
the halting problem.
Contributions of Church, Turing, Post, Kleene, ...
on the concept of computation and recursion
theory motivated by the concept of a proof of a
true mathematical statement.
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Digital computers 1940− 1950

Mark I electromechanical computer (1944): The
calculations required for ballistics during World War II led
to this construction by Howard H. Aiken.
Colossus: Built by British to help Alan Turing breaking the
code behind the German machine, the Enigma.
ENIAC (1946): built at the Moore School at the University
of Pennsylvania.
EDVAC (1944): Mauchly, Eckert, and John von Neumann.
Z3 (1941): the first operational, general-purpose,
program-controlled calculator built by Konrad Zuse.
Invention of the transistor (1947): By John Bardeen,
Walter Brattain, and William Shockley.
Invention of magnetic core memory (∼ 1949): By Jay
Forrester.

5 / 44



Theoretical
Computer
Science

A. Daneshgar

Outline

TCS History

ToC-past

ToC-present

ToC-impacts

TCS-future

Compiler design 1950− 1960

Invention of the notion of a compiler (1951): By Grace
Murray Hopper at Remington Rand.
First FORTRAN compiler (1957): John Backus and others.
LISP and ALGOL (1958): John McCarthy and Alan Perlis,
John Backus, Peter Naur and others.
Integrated circuits (1959): Jack Kilby (Texas Instruments)
and Robert Noyce (Fairchild Semiconductor).
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The CS discipline 1960− 1970

Computer science as a discipline (1962): The first
computer science department was formed at Purdue
University.
The rise of automata theory and the theory of formal
languages (1960′s): Noam Chomsky, Michael Rabin and
others.

Theory of computation: A culmination of ideas coming
from digital design, compiler design, recursion theory and
complexity.
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The rise of modern TCS 1970− 1980

Steve Cook’s seminal paper on NP-completeness (1971):
Design of CRAY-1 (1976): Seymour Cray.
Theory of computation: Digital circuit design+Compiler
design+computability.
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Theory of computation: Origins (computability)

Al-Kharazmi
(∼ 780-850 AD)

John von Neumann
(1903 - 1957)

The fundamental question in early days
Can we provide a computational solution to any problem?
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Theory of computation: Origins (computability)

Hilbert (1900): Can every true statement be proven (in a
finite axiomatic system)?
Gödel’s incompleteness theorem (1931): Some true
statements are unprovable!
Can every function be computed?
Turing’s undecidability theorem (1936): Some functions
are not computable!
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Theory of computation: the coding trick

A problemtype P consists of the following data:
Constants: .......
Given input: .....
Query: ...........?

An example
Constants: 3.
Given input: the integer n.
Query: Is n divisible by 3?

Main question: How do you provide the data?
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Theory of computation: membership problem

The membership problemtype
Constants: Σ a finite set of alphabets and a subset
L ⊆ Σ∗.
Given input: a word x ∈ Σ∗.
Query: Is it true that x ∈ L?

Fact: Any yes-no problem as P can be reduced to a
membership problem for some subset (i.e. a language) LP .

Main question: How do you provide the data?
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A computational model (machine)

It is an abstract machine consisting of:

A hardware (i.e. a control unit).
A memory.
A mechanism to read the input.
A mechanism to write the output.

working as a discrete dynamical system with local property.
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Theory of computation: early impacts

There was a controversy regarding the definition of computation
during the early days.

Definition through computational machines.
Definition through constructional procedures
(i.e. grammars).
Definition through computable functions
(i.e. recursion theory).

Church-Turing thesis (1934-1937)
At the level of Turing machines all rational models of
computation are equivalent!
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Theory of computation: complexity measures

The fundamental questions
Do natural hard problems exist?
What are the consequences of answers YES or NO to this
question?
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Theory of computation: complexity measures

Main Question: How much should we pay for a computation?

Typical cost functions
Time
Used memory
even more complex cost functions!

The variable: is the length of the input!

Main objective: Study the behaviour of the cost function?
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Theory of computation: P vs. NP

Acceptable (i.e. effective) cost functions
Early days (1960’s): Polynomially bounded functions.
Nowadays: low-degree polynomially bounded.
Trend (big data): O(n log n) or less!

The complexity class P
(1960’s: Cobham, Edmonds and Rabin)
Consists of all decision problems that can be solved by
polynomial-time bounded deterministic decider algorithms.

It is good if we can effectively (i.e. fairly easily) solve a problem!

17 / 44



Theoretical
Computer
Science

A. Daneshgar

Outline

TCS History

ToC-past

ToC-present

ToC-impacts

TCS-future

Theory of computation: P vs. NP

Fact
There exists a large number of fundamental decision problems
(say more than 2000) for which any claim for a solution can be
verified efficiently (i.e. in polynomial time), however, no
efficient (i.e. polynomial time) solver is known for any one of
these problems!

The complexity class NP
(1970’s: Cook, Levin, Karp)
Consists of all decision problems that can be solved by
polynomial-time bounded nondeterministic acceptor algorithms.

NP-Complete: The class of hardest problems in NP.
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Example for an NP-complete problem: Hamiltonian
Cycle
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An important question!

The fundamental questions
Do natural hard problems exist?

One has to formulate easy and hard!
We are not Zeus: hence it is generally believed that the
answer is YES!
It is astonishing that existence of hard problems is quite
important in modern technological applications!

A fundamental problem: Do hard problems exist?
i.e., P ?

= NP .
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Theory of computation: 1 M$ Millennium Problems
(Clay institute 2000)

Seven problems each gives you $1 million at least!

P vs. NP

Determine the answer to the question P ?
= NP .

Riemann Hypothesis
The prime number theorem determines the average distribution
of the primes. The Riemann hypothesis tells us about the
deviation from the average. Formulated in Riemann’s 1859
paper, it asserts that all the ’non-obvious’ zeros of the zeta
function are complex numbers with real part 1/2.

There are 5 more problems and 4 more unsolved ones!
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Randomness and usefulness of hard problems

A couple of fundamental problems:

Can one produce (i.e. simulate) almost ideal random bits?
Is randomness useful in computation? Can one use
randomness to get easier solutions?
Can one reproduce a large number of random bits using a
small number of ideal ones?
What does Riemann Hypothesis say about the set of
natural numbers?

22 / 44



Theoretical
Computer
Science

A. Daneshgar

Outline

TCS History

ToC-past

ToC-present

ToC-impacts
Randomness
Expanders

TCS-future

On the concept of a “Proof"

How to make sure that a claim is true?
A sound proof is a valid argument for the correctness of a
claim.

To make sure that a claim is true it is quite sufficient to
have/see/verify a proof of it!

However, to make sure that a claim is true it is also
sufficient to make sure that there exists a proof of it!!!!
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Example: the blind and the twins

Yellow Blue

Blue Yellow

Blue Yellow

Yellow Blue××

Dishonest Honest
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Example: BPP and secure communication

BPP is the randomized counterpart of P.

The class BPP
A language L is in BPP if there exists a randomized algorithm
A such that

x ∈ L implies that Pr(A(x) = accept) > 3/4.
x 6∈ L implies that Pr(A(x) = reject) > 3/4.

A fundamental problem: Do hard problems exist?
i.e., NP −BPP ?

= ∅.

25 / 44



Theoretical
Computer
Science

A. Daneshgar

Outline

TCS History

ToC-past

ToC-present

ToC-impacts
Randomness
Expanders

TCS-future

Example: BPP and secure communication

In secure communication:

It is assumed that everyone knows about the details of
algorithms ENC and DEC except the security parameter κ
(i.e. the key).
The adversary problem: {p | ∃ κ ENC(κ, p) = c} ∈ NP .
(oversimplified!)

NP −BPP = ∅ ⇒ there is no secure communication system!

Study of a possible converse is the subject of modern provable
cryptography!
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Probabilistic algorithms

Question 1:
Does randomness fundamentally help in computation? i.e. are
there problems with probabilistic polynomial-time algorithmic
solutions but no deterministic one?

Question 2:
Does NP require strictly more than polynomial time?
i.e. there exist natural hard problems!

At least one of the answers is NO!!
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Probabilistic algorithms

More on the story of random bits in computability!

On the existence of hard problems
Assuming factorization of integers has no efficient algorithm
implies P 6= NP .

[Blum, Micali, Yao, Nisan, Impagliazzo, Wigderson]
Existence of hard problems (say P 6= NP or something similar!)
implies the existence of Pseudo-random generators.
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Probabilistic proof system

A proof is an argument for a claim.
Main question: Is it valid?

∃ a probabilistic verifier V (claim, arg) for the claim, such
that

If the claim is true then V (claim, arg∗) = true for some
argument arg∗.
If the claim is false then V (claim, arg) = false for every
argument arg with probability more than 0.99.
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Probabilistic checkable proofs (PCP’s)

∃ a probabilistic verifier V (claim, arg) for the claim, such
that
the verifier only reads at most 10 bits of the argument at
random.

[Arora-Safra, Arora-Lund-Motwani-Sudan-Szegedy-Hastad]
Every proof can be efficiently transformed into a PCP!
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Applications

Assuming the existence of natural hard problems:

Non-approximability
Some NP-complete problems (e.g. MaxClique, MaxSat, ...) are
non-approximable!

Grading answer sheets
There exists a randomize procedure using which you can grade
the answer sheets of your exam in which you only read at most
10 random characters from each sheet and the maximum
probability of giving a wrong grade is less than 0.0001!

Authentication
There exists a randomize procedure using which you can prove
to your bank on the Internet that you are YOURSELF without
revealing your electronic signature at all!31 / 44
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Graphs and Matrices
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

0 1 0 0 1 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 1 0 0 0 1
0 0 0 1 0 1 1 0 0 0
0 0 0 0 1 0 1 1 0 0


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Random bits

A fundamental problem
Design of pseudo-random generators, and extractors are among
the most fundamental problems in ToC, Engineering and
Science.
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Random regular graphs: main questions

0 dll 2

spectral gap

n

What can be said about the spectral gap?
What can be said about other connectivity related
parameters as chromatic number, expansion, Hamiltonicity
.....
Analysis of the extremal cases are usually quite challenging
problems.
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Primes and Zeta Functions: definitions

Consider a geometric space made of primes and their
amalgams.
e.g. Q, number fields, function fields, Riemannian
manifolds, graphs, ...
The connectivity of the space is naturally related to
number of primes and how they are mixed together.
Connectivity is a fundamental concept that can be studied
and measured in many different ways.
A zeta (in general L) function is a mathematical concept
that is supposed to present and reflect all these aspects in
a reasonable way!
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Primes and Zeta Functions

Rational numbers

The Riemann zeta function ζ(s) =

∞∑
n=1

1

ns
=

∏
p prime

(1− p−s)−1

is related to Hecke operators but possibility for relation to a
natural diffusion is not fully understood yet.

Graphs

The Ihara zeta function ζ(u) =
∏

[P ] prime

(1−u`([P ]))−1 is related

to the adjacency operator and this relation is fully understood.

Apply u := q−s to compare!
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Ramanujan Graphs

Riemann Hypothesis (RH) for Q
If ζ(s) = 0 and 0 < Re(s) < 1 then Re(s) = 1/2.

Riemann Hypothesis (RH) for graphs (Ihara zeta func.)

If ζ(q−s)−1 = 0 and 0 < Re(s) < 1 then Re(s) = 1/2.

This is equivalent to the following:

Ramanujan graphs
A (q + 1)-regular graph with adjacency matrix A satisfies RH iff
it is Ramanujan, i.e. if

µ
def
= max{|λ| | λ ∈ Spec(A) & |λ| 6= q + 1}

then µ ≤ 2
√
q.
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Spectrum of a Ramanujan Graph

Note: Regularity is d = q + 1.

0 dll 2

2 1d -2 1d- -

n

Nontrivial eigenvalues are small
The graph is sparse but highly connected
It is a good sparse approximation of a complete graph
Alon-Boppana 1986: We can not beat the bound 2

√
d− 1

asymptotically
The bound 2

√
d− 1 is the spectral radius of the infinite

d-regular tree (i.e. the universal cover!)
38 / 44



Theoretical
Computer
Science

A. Daneshgar

Outline

TCS History

ToC-past

ToC-present

ToC-impacts
Randomness
Expanders

TCS-future

Expanders in TCS

0 dll 2

2 1d -2 1d- -

n

Expanders are sledgehammers of TCS! They are used in:

Derandomization
Complexity theory
Error correcting codes
Compressed sensing
Communication networks
Approximate counting
Measure theory
Number theory
...39 / 44
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Ramanujan graphs of arbitrary degree

A. W. Marcus, D. A. Spielman, N. Srivastava, 2013+
Published in Annals of Mathematics (2015)
There exist (arbitrarily large enough) bipartite regular
Ramanujan graphs of arbitrary degree.

The proof is based on the fundamental technique of interlacing
families of polynomials which is also used by the same authors
to prove Kadison-Singer Problem.
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A Royal Road to Mathematics

Propaganda!

Euclid of Alexandria (about 300 BC):
There is no Royal Road to geometry.

Graph theory zoo
Graph theory is a Royal Road to the heart of modern
mathematics that is free to be used by any curious scholar!

The road passes through Computer Science land of Oz!
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Some hot topics

Big data and fast (O(n log n)) algorithms.
Machine learning and foundations of AI.
Provable cryptography.
Quantum computation.
Theoretical biology.
Network theory and modeling.
Image processing and computer graphics.
Compressed sensing
Foundations of mathematics and programming.
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A quotation!

In the prelude of “Récoltes et Semailles", Alexandre
Grothendieck makes the following points on the search for
relevant geometric models for physics and on Riemann’s lecture
on the foundations of geometry.
It must be already fifteen or twenty years ago that, leafing
through the modest volume constituting the complete works of
Riemann, I was struck by a remark of his “in passing".

... it could well be that the ultimate structure of space is
discrete, while the continuous representations that we make of
it constitute perhaps a simplification (perhaps excessive, in the
long run ...) of a more complex reality; That for the human
mind, “the continuous" was easier to grasp than the
“discontinuous", and that it serves us, therefore, as an
“approximation" to apprehend the discontinuous.
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